
A Measure of Difference between Discrete Sample Sets

Debejyo Chakraborty†∗ and Narayan Kovvali‡
†Global Research & Development, General Motors Company, Warren, Michigan

‡School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona

Abstract—The estimation of statistical distance between pop-
ulations is a task of importance for many applications. Conven-
tional methods often rely on the use of a maximum-likelihood
(ML) estimator, usually due to its analytical and computational
simplicity. However, the ML point estimate provides no infor-
mation about the uncertainty in the parameters and distance
estimated, which grows with lesser amounts of observed data. In
this paper, a new measure is developed for statistical difference
between finite sized sample sets of discrete observations. The
measure is defined as the expected distance between probability
mass functions (pmfs), with the expectation carried out over
Dirichlet posteriors on the pmfs given the observed samples. In
contrast to conventional ML estimates of distance, this approach
by-design accounts for the uncertainty due to the finite size of the
observation sets. In the limit of infinite number of observation
samples, the expected distance simplifies to the ML estimate. For
finite and small sized sample sets, the expected distance yields a
more reliable measure of statistical difference.

I. INTRODUCTION

The estimation of statistical distance between populations
is a task of importance for many applications, for example,
classification [1], dimensionality reduction [2], and region-of-
interest based tracking [3]. Conventional methods often rely
on the use of a maximum-likelihood (ML) estimator [4, 5],
usually due to its analytical and computational simplicity.
However, the ML point estimate provides little information
about the uncertainty in the parameters and distance estimated,
which is greater for lesser amounts of observed data. For data
sets with very few observation samples, the ML point estimate
may be completely unrepresentative of the true distance.
Therefore, while the ML estimator may suffice in situations
where plenty of data is available, its use is undesirable
for many real problems which suffer from insufficient data
because of the difficulty and cost associated with the collection
and management of large amounts of data.

In this paper, we develop a new measure of statistical differ-
ence between finite sized sample sets of discrete observations.
The measure is defined as the expected distance between
probability mass functions (pmfs), with the expectation carried
out over Dirichlet posteriors on the pmfs given the observed
samples. In contrast to conventional ML estimates of distance,
this approach by-design accounts for the uncertainty due to
the finite size of the observation sets. In particular, by using
the expected squared deviation of the distance, probabilistic
bounds can be defined for the distance measure in order to
quantify the statistical difference between the sample sets
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of finite size. In the limit of infinite number of observation
samples, the expected distance simplifies to the ML estimate.
For finite and small sized sample sets, the expected distance
yields a more reliable measure of statistical difference.

The distance measure can be used in a variety of applica-
tions. For instance, the measure can be used to implement
an effective and efficient convergence diagnostic [6–8] for
(discrete) single-run Markov chain Monte Carlo (MCMC) [9]
simulations with known or unknown target distribution. This
measure can also be used in statistical hypothesis tests, detec-
tion theory [10], and for classification problems.

The remainder of this paper is organized as follows. In
Section II, we discuss the new distance measure and provide
closed-form analytical expressions for its computation. In
Section III, results are presented comparing the analytical
calculations with Monte Carlo integration, and some example
applications of the distance measure are given. This is followed
by conclusion in Section IV.

II. THEORY

The proposed method considers the uncertainty in the
underlying pmfs manifested by the finite size of the observed
data sets, and leverages it in order to estimate and quantify
the resulting uncertainty in the distance measure.

Consider two discrete data sets of size N , Y
1
N =

{y1n}
N
n=1 ∼ p1 and Y

2
N = {y2n}

N
n=1 ∼ p2, distributed accord-

ing to underlying M -state pmfs p1 and p2, respectively. Let
D(p1||p2) denote a statistical measure of difference between
p1 and p2, also referred to as statistical distance. Some
common examples of statistical distance measures include
Kullback-Leibler (KL) divergence [5, 11], Bhattacharyya dis-
tance [12, 13], and total variation distance; appropriate choice
of distance measure is made based on the application.

In the ML approach, pmf estimates p̂1 and p̂2 are computed
using the frequency of occurrence of the states in the observed
data samples:

p̂l[i] =
|{n : yln ∈ state i}|

N
, i = 1, . . . ,M, l = 1, 2,

and these estimates are used to approximate the statistical
distance as D(p̂1||p̂2).

In this paper, the expected distance measure is defined as

D(p1||p2) � E [D(p1||p2)]

=

∫∫
D(p1||p2)P

(
p1|Y

1
N

)
P
(
p2|Y

2
N

)
dp1 dp2, (1a)
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where P
(
p1|Y

1
N

)
and P

(
p2|Y

2
N

)
are the posterior distribu-

tions over p1 and p2 given the observation sets Y
1
N and Y

2
N ,

respectively. The variance can be written as

Var [D(p1||p2)] =

∫∫ [
D(p1||p2)−D(p1||p2)

]2
P
(
p1|Y

1
N

)

P
(
p2|Y

2
N

)
dp1 dp2. (1b)

In particular, the posteriors P
(
p1|Y

1
N

)
= Dir(α1) and

P
(
p2|Y

2
N

)
= Dir(α2) are Dirichlet distributions with param-

eters α1 and α2 determined by the frequency of occurance of
the states in the observed data samples:

αl[i] = 1 + |{n : yln ∈ state i}|, i = 1, . . . ,M, l = 1, 2.

Probabilistic bounds can be obtained for the distance mea-
sure using Chebyshev’s inequality with the expected distance
and its variance:

P (
∣∣D(p1||p2)−D(p1||p2)

∣∣ ≥ ε) ≤
Var [D(p1||p2)]

ε2
, (2)

i.e., with probability at least γ, the statistical distance

D(p1||p2) lies within D(p1||p2) ±
√

Var[D(p1||p2)]
1−γ

(with 0
a trivial lower bound).

The quantities in Eq. (1) can be computed for general dis-
tance measures D(p1||p2) by using Monte Carlo integration.
In this work, we provide closed-form analytical expressions
for the case when D(p1||p2) = DKL(p1||p2) is the KL
divergence:

DKL(p1||p2) �
M∑
i=1

p1[i] log
p1[i]

p2[i]
. (3)

The specific expressions for the KL distance mean and
variance are as follows.

DKL(p1||p2) =

M∑
i=1

α1[i]

α0
1

[
ψ(α1[i] + 1)− ψ(α0

1 + 1)

− ψ(α2[i]) + ψ(α0
2)
]
, (4a)

Var [DKL(p1||p2)] = E
[
DKL(p1||p2)

2
]
−DKL(p1||p2)

2,
(4b)

with the second moment

E
[
DKL(p1||p2)

2
]
=

M∑
i=1

M∑
j=1

[
I1 − I2I3 − I4I5 + I6I7

]
,

where α0
l =

∑M

i=1 αl[i] for l = 1, 2, and I1 through I7 are
given by

I1 =
α1[i] (α1[j] + δi,j)

α0
1 (α

0
1 + 1)

[
ψ1(α1[i] + 2) δi,j − ψ1(α

0
1 + 2)

+
(
ψ(α1[i] + 1 + δi,j)− ψ(α0

1 + 2)
)

·
(
ψ(α1[j] + 1 + δi,j)− ψ(α0

1 + 2)
)]
,

I2 =
α1[i] (α1[j] + δi,j)

α0
1 (α

0
1 + 1)

[
ψ(α1[j] + 1 + δi,j)− ψ(α0

1 + 2)
]
,

I3 = ψ(α2[i])− ψ(α0
2),

I4 =
α1[i] (α1[j] + δi,j)

α0
1 (α

0
1 + 1)

[
ψ(α1[i] + 1 + δi,j)− ψ(α0

1 + 2)
]
,

I5 = ψ(α2[j])− ψ(α0
2),

I6 =
α1[i] (α1[j] + δi,j)

α0
1 (α

0
1 + 1)

,

I7 = ψ1(α2[i]) δi,j − ψ1(α
0
2)

+
(
ψ(α2[i])− ψ(α0

2)
)(
ψ(α2[j])− ψ(α0

2)
)
.

Here ψ(·) is the digamma function, ψ1(·) is the trigamma
function, and δ denotes the Kronecker delta function.

The method requires O(M2) computational effort for eval-
uating the statistical KL distance. The result is a reliable
and efficiently-computed KL distance measure which can be
deployed for real-time applications.

Note that in scenarios where one of the pmf is known (i.e.,
when computing the statistical distance of a given discrete
sample set to a known pmf), the corresponding integral in (1)
vanishes. For example, if the pmf p2 = p∗ is known, then

D(p1||p∗) =

∫
D(p1||p∗)P

(
p1|Y

1
N

)
dp1, (5a)

Var [D(p1||p∗)] =

∫ [
D(p1||p∗)−D(p1||p∗)

]2
P
(
p1|Y

1
N

)
dp1.

(5b)

As before, these quantities can also be evaluated analytically
for the KL divergence.

III. SIMULATION RESULTS

We now present simulation results comparing the analytical
calculations of Section II with Monte Carlo integration, and
show example applications of the expected KL divergence
measure for the assessment of convergence of a discrete single-
run Markov chain and for testing uniformity.

A. Validation of Derived Results

We compare estimates of the expected KL divergence mea-
sure using three methods: ML approach, analytical expected
distance, and Monte Carlo integration. Figure 1 shows the
results for estimating the expected KL divergence between two
sets of synthetically generated data samples. 500 simulations
were performed, with the following combinations of number
of states and (average) number of data samples: (a) M = 5
and N = 35, (b) M = 100 and N = 700, (c) M = 5
and N = 150, and (d) M = 100 and N = 3000. In each
simulation, about 500 to 1000 independent and identically
distributed (i.i.d.) Dirichlet random samples were used for the
Monte Carlo integration.

The plots show that the KL divergence estimate from the
ML approach is close to the expected distance only in case
(c) where the number of states is small and the number of
data samples per state is large. The difference is particularly
large in the case (b) where the number of states is large and
the number of data samples per state is small. In all cases,
the analytical expected KL divergence agrees very well with
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(a) M = 5 and N = 35
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(b) M = 100 and N = 700
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(c) M = 5 and N = 150
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(d) M = 100 and N = 3000

Fig. 1. Estimation of expected KL divergence between two sets of
synthetically generated data samples for various combinations of number of
states M and (average) number of data samples N .

the Monte Carlo integration results, while being much more
efficient to calculate than the Monte Carlo integration. The
analytical and Monte Carlo integration results were observed
to agree well for the calculation of variance also (not shown
here).

B. Markov Chain Convergence Diagnosis

Consider a simple first-order time-homogeneous M = 4-
state Markov chain with transition matrix A and stationary
distribution π. Let A1 and A2 be two transition matrices, given
by

A1 =

⎡
⎢⎢⎣

0.9 0.1 0.0 0.0
0.0 0.9 0.0 0.1
0.1 0.0 0.7 0.2
0.1 0.0 0.0 0.9

⎤
⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎣

0.0 0.5 0.5 0.0
0.0 0.0 0.5 0.5
0.5 0.0 0.0 0.5
0.5 0.5 0.0 0.0

⎤
⎥⎥⎦ .

The matrix A1 has second largest eigenvalue magnitude
0.8544 and the matrixA2 has second largest eigenvalue magni-
tude 0.7071. Therefore, the Markov chain with A1 as transition
matrix converges slower than that with A2 as transition matrix.
For each of the two Markov chains, a realization of length
10,000 samples was generated. Samples were collected into
overlapping batches of growing size, in steps of 100 samples.
That is, the first batch contained the first 100 samples, the
second batch contained the first 200 samples (including the
100 samples from the first batch), and so on. The statistical KL
divergence between consecutive batches was then computed
and monitored to assess convergence.

Figure 2 shows plots of the expected KL divergence between
consecutive batches, 99% confidence intervals, ±1σ deviation
from the expected distance, and the corresponding ML esti-
mates of distance for the two Markov chains as a function
of the number of samples. Table I shows the expected KL
divergence along with 99% confidence intervals and corre-
sponding ML estimates, computed for the two chains at sample
index 10,000 (100th batch). It can be seen that, for the same
number of iterations, the faster converging Markov chain with
transition matrix A2 achieves lower expected KL divergence
between consecutive batches than the chain with transition
matrix A1. Note that the comparison is less meaningful during
the inital phase of the chains because of the larger variance, but
as the chains progress the variance decreases (due to increasing
batch size). In fact, the variance decreases at a rate proportional
to 1/N , where N is the number of samples. As the expected
KL divergence between consecutive batches approach zero, it
can be inferred that the batch samples are being drawn from
similar distributions, indicating Markov chain convergence.

C. Test of Uniformity

The KL divergence can be utilized in statistical tests. For
example, one can use the KL divergence to estimate how
uniformly distributed a sample set is. This is an example of
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(a) Transition matrix A1 (second largest eigenvalue
magnitude = 0.8544)
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(b) Transition matrix A2 (second largest eigenvalue
magnitude = 0.7071)

Fig. 2. Expected KL divergence between consecutive Markov chain batches,
99% confidence intervals, and corresponding ML estimates for the two
Markov chains as a function of the number of samples.

Tr. matrix A1 Tr. matrix A2

DKL 3.0590× 10−4 3.0165× 10−4

Var [DKL] 7.7938× 10−8 6.0663× 10−8

DKL lower bound 0 0
DKL upper bound 3.0911× 10−3 2.7646× 10−3

DKL ML estimate 5.0200× 10−6 2.5827× 10−7

TABLE I
EXPECTED KL DIVERGENCE, 99% CONFIDENCE INTERVALS, AND

CORRESPONDING ML ESTIMATES, COMPUTED FOR THE TWO MARKOV

CHAINS AT SAMPLE INDEX 10,000 (100TH BATCH).

a problem where one of the pmfs, say p2, is known and is
uniform. Then, using (5), one can calculate the expected KL
divergence and the variance. Alternatively, the framework (1)-
(4) may be used to provide an approximation, by setting
α2[i] = N , i = 1, . . . ,M where N is large. This is equivalent
to imposing that p2 is a random pmf with Dirichlet distribution
sharply concentrated around the uniform pmf.

We consider two M = 4-state Markov chains: one with
uniform target distribution and state transition matrix A2,
and the other with non-uniform target distribution and state

transition matrix given by

A3 =

⎡
⎢⎢⎣

0.3 0.2 0.3 0.2
0.3 0.2 0.3 0.2
0.3 0.2 0.3 0.2
0.3 0.2 0.3 0.2

⎤
⎥⎥⎦ .

For each of the two Markov chains, a realization of length
100,000 samples was generated. As before, the samples were
collected into overlapping batches of growing size, in steps of
100 samples. The statistical KL divergence of these batches
was then computed with respect to a uniform pmf.

Figure 3(a) shows the statistical distance for the Markov
chain using transition matrix A2. It can be seen that the
expected distance approaches zero, confirming that the target
distribution for this Markov chain is indeed uniform. An
empirical estimate of the stationary distribution for the Markov
chain using transition matrix A2 is shown in Figure 3(b).
Figure 3(c) shows the statistical distance for the Markov chain
using transition matrix A3. In this case, the distance converges
to a non-zero value, which is the expected KL divergence
between the non-uniform target distribution of this Markov
chain and the uniform pmf. An empirical estimate of the
stationary distribution for the Markov chain using transition
matrix A3 is shown in Figure 3(d).

IV. DISCUSSION

In this paper, a new measure has been described for the
statistical difference between finite sized sample sets of dis-
crete observations. The statistical distance measure is defined
as the expected distance between underlying pmfs, which are
Dirichlet distributed in light of the observed data samples.
This approach by-design accounts for the uncertainty due to
the finite size of the observation data sets, and yields the
expected statistical distance along with probabilistic bounds.
When the number of available data samples is small, the new
statistical distance measure is more representative and reliable
as compared to conventional ML estimates.

The expected distance measure and its bounds can be
computed for general distance measures by using Monte Carlo
integration. In particular, for the KL divergence measure,
closed-form analytical expressions were derived for the ex-
pected distance and its bounds, which can be evaluated with
O(M2) computational complexity (where M is the number of
discrete states).

The utility of the expected statistical distance measure is
demonstrated through simulation results for diagnosing the
convergence of a discrete single-run Markov chain and for
testing uniformity. Other potential applications include sta-
tistical hypothesis testing, detection and classification tasks,
sequential Monte Carlo methods, etc. The approach can also
be used to generalize and compute an expected discrepancy
measure [14] with an associated confidence interval, which
would benefit applications such as [1].

REFERENCES

[1] D. Chakraborty, N. Kovvali, A. Papandreou-Suppappola,
and A. Chattopadhyay, “Active learning data selection for

1911



0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Markov chain iteration (× 1000)

D
is

ta
nc

e

E[D]
±σ
± ε (99%)
ML

(a) Distance from uniform pmf for Markov chain with
transition matrix A2

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

States

P
ro

ba
bi

lit
y 

de
ns

ity

(b) Empirically estimated target distribution

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Markov chain iteration (× 1000)

D
is

ta
nc

e

E[D]
±σ
± ε (99%)
ML

(c) Distance from uniform pmf for Markov chain with
transition matrix A3

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

States

P
ro

ba
bi

lit
y 

de
ns

ity

(d) Empirically estimated target distribution

Fig. 3. Expected KL distance from a uniform pmf for Markov chains with
uniform and non-uniform target distributions.

adaptive online structural damage estimation,” in Proc. of
SPIE, vol. 7649, 2010, p. 764915.

[2] A. Bhattacharya, P. Kar, and M. Pal, “On low distortion
embeddings of statistical distance measures into low
dimensional spaces.” in DEXA’09, 2009, pp. 164–172.

[3] S. Boltz, E. Debreuve, and M. Barlaud, “High-
dimensional statistical distance for region-of-interest
tracking: Application to combining a soft geometric
constraint with radiometry,” in in IEEE International
Conference on Computer Vision and Pattern Recognition,
2007, p. 07.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classi-
fication, 2nd ed. Wiley Interscience, 2001.

[5] D. J. C. MacKay, Information Theory, Inference, and
Learning Algorithms. Cambridge University Press,
2003.

[6] M. K. Cowles and B. P. Carlin, “Markov Chain Monte
Carlo Convergence Diagnostics: A Comparative Review,”
Journal of the American Statistical Association, vol. 91,
no. 434, pp. 883–904, Jun 1996.

[7] A. Gelman and D. B. Rubin, “A single series from
the Gibbs sampler provides a false sense of security,”
Bayesian Statistics, vol. 4, pp. 625 – 631, 1992.

[8] ——, “Inference from iterative simulation using multiple
sequences,” Statistical Science, vol. 7, no. 4, pp. 457 –
511, 1992.

[9] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter,
Markov Chain Monte Carlo in Practice. Chapman and
Hall/CRC, 1996.

[10] H. L. V. Trees, Detection, Estimation, and Modulation
Theory, Part I. Wiley Interscience, 2001.

[11] T. M. Cover and J. A. Thomas, Elements of Information
Theory, 2nd ed. Wiley-Interscience, 2006.

[12] A. Bhattacharyya, “On a measure of divergence between
two statistical populations defined by their probability
distributions,” Bulletin of the Calcutta Mathematical So-
ciety, vol. 35, pp. 99–109, 1943.

[13] T. Kailath, “The divergence and Bhattacharyya distance
measures in signal selection,” IEEE Transactions on
Communication Technology, vol. 15, no. 1, pp. 52–60,
1967.

[14] L. Kuipers and H. Niederreiter, Uniform Distribution of
Sequences, L. Bers, P. Hilton, and H. Hochstadt, Eds.
John Wiley & Sons Inc., 1974.

1912


